

DEPARTMENT OF CHEMISTRY

Bachelor of Science

(Physics, Chemistry, Mathematics)

3rd Semester

Syllabi

Effective from Session: 2020-21							
Course Code	PY201	11 Title of the Course Circuit Fundamentals and Basic Electronics				P	С
Year	Second	Semester	Third	3	1	0	4
Pre-Requisite	10+2 with Physics Co-requisite						
Course Objectives	principle of oper 2. To understand th 3. To learn the con 4. To understand th	ration for various AC br ne basic concepts of var cept of BJT and feedbac ne basic concepts of osc	ious semi-conductor material. ck amplifier.	and R	LC an	d expl	ain

	Course Outcomes
CO1	Student will be able to solve complex circuit using theorems. Student will be able to measure the passive component through bridges.
CO2	Student will be able to design power supply. Student will be able to differentiate the semiconductor.
CO3	Learn the signal amplification through BJT and how to increase the gain.
CO4	Design the different oscillator circuits for various frequencies Student will be able to design the mathematical operation using op-amp
	Student will be able to
	1. Use of different modulation and demodulation techniques used in analog communication
CO5	2. Identify and solve basic communication problems
	3. Measure the voltage, phase and frequency using CRO
	4. Measure the voltage, resistance, current and capacitance using multimeter.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Circuit Fundamentals	Growth and decay of currents through inductive resistances, charging and discharging in R.C. and R.L.C. circuits, Time constant, measurement of high resistance, A.C. Bridges, Maxwell's and Scherings Bridges, Wien Bridge, Thevenin, Norton and superposition theorems and their applications.	8	1
2	Theory of Semiconductor	Semiconductors, intrinsic and extrinsic semiconductors, n-type and p-type semiconductors, unbiased diode forward bias and reverse bias diodes, diode as a rectifier, diode characteristics, zener diode, avalanche and zener breakdown, power supplies, rectifier, bridge rectifier, capacitor input filter, voltage regulation, zener regulator.	8	2
3	Transistor Basics	Bipolar transistors, three doped regions, forward and reverse bias, DC alpha, DC beta transistor curves. Transistor biasing circuits: base bias, emitter bias and voltage divider bias, DC load line, Basic AC equivalent circuits, low frequency model, small signal amplifiers, common collector amplifiers, and common base amplifiers, current and voltage gain, R.C. coupled amplifier, gain, frequency response, equivalent circuit at low, medium, and high frequencies, feedback principles.	8	3
4	Oscillators and OPAMP	Input and output impedance, transistor as an oscillator, general discussion, and theory of Hartley oscillator only. Operational amplifier (black box approach) and its ideal characteristics, virtual ground, inverting and non-inverting amplifiers, adder, integrator, and differentiator	8	4
5	Modulation and Instrumentation	Elements of transmission and reception, basic principles of amplitude and frequency modulation and demodulation. Principle and design of linear multimeters and their application, cathode ray oscillograph and its simple applications.	8	5
Referen	ce Books:			
B. G. S	Streetman; "Solid St	ate Electronic Devices", IInd Edition (Prentice Hall of India, New Delhi, 1986).		
W.D. 5	Stanley: "Electronic	Devices, Circuits and Applications" (Prentice-Hall).		
		undamentals and Applications" 2nd Edition (Prentice-Hall of India, New Delhi, 1986).		
Millm	an and A. Grabel, "N	Aicroelectronics", International Edition (McGraw Hill Book Company, New York, 1988).		
e-Lear	rning Source:			

https://nptel.ac.in

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	1	1	-	-	-	1	1	-	1	-	-
CO2	3	1	1	-	-	-	1	-	1	-	-	-
CO3	3	1	1	-	-	-	1	1	-	1	-	-
CO4	3	1	1	-	-	-	1	-	-	-	-	-
CO5	3	1	1	-	-	-	1	1	1	-	-	-

Name & Sign of Program Coordinator	Sign & Seal of HoD

		0						
Effective from Session: 2020-21								
Course Code	PY202	Title of the Course	e of the Course Kinetic Theory and Thermodynamics I					
Year	Second	Semester	Third	3	1	0	4	
Pre-Requisite	10+2 with Physics	Co-requisite	-					
Course Objectives			eal gases, thermodynamics of a system, basic principles and neory of radiation and to give the students a thorough unders				ic	

	Course Outcomes
CO1	Students will gain an understanding of the basic properties of ideal and real gases like equation of state related to these gases.
CO2	Students will be able to develop a deep understanding of various transport phenomena in ideal and real gases and temperature
	dependence properties.
CO3	Students will be able to understand basic laws of thermodynamics methods and their effects, working of ideal and real engine.
CO4	Students will be able to develop a deep understanding of various thermodynamic potentials, effect and heat equation of various
	thermodynamic systems.
CO5	Students will be able to gain knowledge of theory of Radiation and basic laws of radiation.

Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
Ideal and Real Gases	Kinetic model, deduction of Boyle's law, interpretation of temperature, estimation of r.m.s. speeds of molecules, Brownian motion, estimate of the Avogadro number, equipartition of energy, specific heat of monatomic gas, extension to di- and triatomic gases, adiabatic expansion of an ideal gas. Vander Waals gas, equation of state, nature of Van der Waals forces, comparison with experimental P-V curves, Joule expansion of ideal gas and of a Vander Waals gas, Joule coefficient.	8	1
Liquefaction of Gases and Transport phenomenon	8	2	
The Laws of Thermodynamics	8	3	
Thermodynamic Potentials	Extensive and intensive, Enthalpy, Gibbs, Helmholtz and internal energy functions. Maxwell's thermo dynamical relations & applications - Joule-Thompson Effect, Clausius-Clapeyron heat Equation, Expression for $(C_P - C_V)$, C_P/C_V , TdSequations.	8	4
Theory of Radiation	Blackbody radiation, pure temperature dependence, Stefan-Boltzmann law, pressure of radiation, spectral distribution of Black body radiation. Wien's displacement law, Rayleigh-		5
ce Books:			
6	•		
е			
	ermodynamics (6 Edition McGraw Hill).		
9			
	Ideal and Real Gases Liquefaction of Gases and Transport phenomenon The Laws of Thermodynamics Theory of Radiation ce Books: Agarwal and H.P. Sinha garwal and B.K. Agarwa Zemansky, "Heat and th ning Source:	Ideal and GasesKinetic model, deduction of Boyle's law, interpretation of temperature, estimation of r.m.s. speeds of molecules, Brownian motion, estimate of the Avogadro number, equipartition of energy, specific heat of monatomic gas, extension to di- and triatomic gases, adiabatic expansion of an ideal gas. Vander Waals gas, equation of state, nature of Van der Waals forces, comparison with experimental P-V curves, Joule expansion of ideal gas and of a Vander Waals gas, Joule coefficient.Liquefaction of Gases and Transport phenomenonBoyle temperature and inversion temperature, principle of regenerative cooling and of cascade cooling, liquefaction of hydrogen and helium gas, Refrigeration cycles, meaning of efficiency. Molecular collisions mean free path and collision cross sections. Transport of mass, momentum and energyandinterrelationship.The Laws The Laws of ThermodynamicsThe zeroth law, various indicator diagrams, work done by and on the system, first law of thermodynamics, internal energy as a state function and other applications, Reversible and irreversible changes, Carnot cycle and its efficiency, Carnot theorem and the second law of thermodynamics, different versions of the second law, Entropy, principle of increase of entropy, third law of thermodynamics, impossibility of attaining the absolute zero, Seebeck, Pelier and Thomson effect.Theory of RadiationBlackbody radiation, pure temperature dependence, Stefan-Boltzmann law, pressure of radiation, spectral distribution of Black body radiation. Wien's displacement law, Rayleigh- Jean's law, Planck's law theultra-violetcatastrophy.ere Books: 	Ideal and Gases Kinetic model, deduction of Boyle's law, interpretation of temperature, estimation of tr.m.s. speeds of molecules, Brownian motion, estimate of the Avogadro number, equipartition of energy, specific heat of monatomic gas, extension to di- and triatomic gas. Vander Waals gas, equation of state, nature of Van der Waals forces, comparison with experimental P-V curves, Joule expansion of ideal gas and of a Vander Waals gas, Joule coefficient. 8 Liquefaction of Gases and Transport Boyle temperature and inversion temperature, principle of regenerative cooling and of cascade cooling, liquefaction of hydrogen and helium gas, Refrigeration cycles, meaning of efficiency. 8 The Laws of Thermodynamics The zeroth law, various indicator diagrams, work done by and on the system, first law of thermodynamics, internal energy as a state function and other applications, Reversible and irreversible changes, Carnot cycle and its efficiency, Carnot theorem and the second law of thermodynamics, impossibility of attaining the absolute zero, Seebeck, Peltier and Thomson effect. 8 Theory of Radiation Extensive and intensive, Enthalpy, Gibbs, Helmholtz and internal energy functions. Maxwell's thermo dynamical relations & applications - Joule-Thompson Effect, Clausius-Clapeyron heat Equation, Expression for (Cp - Cv), Cp/Cv, TdSequations. 8 resons: Blackbody radiation, pure temperature dependence, Stefan-Boltzmann law, pressure of radiation, spectral distribution of Black body radiation. Wien's displacement law, Rayleigh-Jean's law, Planck's law theultra-violetcatastrophy. 8 resons: resons: 8 Thermodynamic

https://www.youtube.com/watch?v=AKyJwI5jkjs https://www.youtube.com/watch?v=ju7akwzEmAw

https://www.youtube.com/watch?v=4G_dLx4M76A

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	1	-	-	3	2	1	2	1	3	-
CO2	3	2	1	-	-	3	2	2	3	1	1	-
CO3	3	1	1	-	-	3	2	3	1	2	2	-
CO4	3	1	-	-	-	3	2	3	2	3	1	-
CO5	3	1	1	-	-	3	2	2	3	1	1	-

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21									
Course Code	CH221	Title of the Course	Inorganic and Physical Chemistry-I	L	Т	Р	С		
Year	Second	Semester	Third	2	1	0	3		
Pre-Requisite	10+2 with Chemistry	Co-requisite	-						
Course Objectives	-	s course aims to provide fundamental knowledge of elements of block s and p, noble gas chemistry, heat, and							
Course Objectives	thermodynamics. This course would play a significant role in higher studies.								

	Course Outcomes
CO1	Explain the properties of alkali and alkaline earth metals, and their oxides, hydrides etc. Diagonal relationship
CO2	Discuss the structure of diborane, Lewis acid nature of boron trihalides, preparation of carbides & silicones, preparation & industrial applications of nitride, hydrazine & hydroxylamine.
CO3	Explain types of oxides and oxyacids, their structure and of inter-halogen compounds, pseudo halogens & clatherate compounds
CO4	Use thermochemical equations to relate the amount of heat energy transferred in reactions in reactions at constant pressure (Δ H) to the amount of substance involved in the reaction
CO5	Demonstrate understanding of key concepts related to the second law of thermodynamics, including alternative statements of the second law, the internally reversible process, and the Kelvin temperature scale

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Chemistry of s Block Elements	General characteristics: melting point, flame colour, reducing nature, diagonal relationships and anomalous behavior of first member of each group. Reactions of alkali and alkaline earth metals with oxygen, hydrogen, nitrogen and water. solvation and complex formation by S- block.	7	1
2	Chemistry of p Block Elements	Comparative study (including diagonal relationship) of groups 13-17 elements, compounds like oxides, oxyacids and of group 13-16, hydrides of boron-diborane and higher boranes, borazine, fluorocarbons, silicates (structural principle), tetrasulphur tetra nitride, basic properties of halogens, interhalogens and polyhalides.	7	2
3	Chemistry of Noble Gasses	Chemical properties of the noble gases, discovery of O^{2+} PtF ⁶ and O_2XeF_6 .Chemistry of xenon, structure and bonding in xenon compounds.	7	3
4	Thermochemistry	Standard state, standard enthalpy of formation – Hess's Law of heat summation and its applications, Heat of reaction at constant pressure and at constant volume, Enthalpy of neutralization, Bond dissociation energy and its calculation from thermo-chemical data, temperature dependence of enthalpy,Kirchhoff's equation.	7	4
5	Second Law of Thermodynamics	Need for the law, different statements of the law, Cornot's cycle and its efficiency, Carnot's theorem. Thermodynamic scale of temperature. Entropy as a state function, entropy as a function of V & T, entropy as a function of P & T, entropy change in physical change, clausius inequality, entropy as a criteria of spontaneity and equilibrium. Gibbs and Helmholtz functions: Gibbs function (G) and Helmhotz function (A) as thermodynamic quantities.	7	5
Referen	ce Books:			
Lee, J.D	. Concise Inorganic Che	mistry, Pearson Education.		

Lee, J.D. Concise Inorganic Chemistry, Pearson Education.

Huheey, J.E., Keiter, E.A., Keiter, R. L., Medhi, O.K. Inorganic Chemistry, Principles of Structure and Reactivity, Pearson Education 2006.

Douglas, B.E. and Mc Daniel, D.H., Concepts & Models of Inorganic Chemistry, Oxford, 1970.

Castellan, G. W. Physical Chemistry, Published by Narosa.

Physical Chemistry, Puri Sharma & Pathania. Peter, A. & Paula, J. de. Physical Chemistry 9th Ed., Oxford University Press

e-Learning Source:

https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/104101090/lec1.pdf

https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/104106096/lec9.pdf

https://ocw.mit.edu/high-school/chemistry/exam-prep/structure-of-matter/chemical-bonding/

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
СО	FOI	I FO2	FUS	r04	F05	100	107	1501	1502	1505	1504	1305
CO1	2	1	-	-	-	2	3	3	3	2	1	1
CO2	2	1	-	-	-	2	3	3	3	1	2	1
CO3	2	1	-	-	-	2	3	3	3	1	2	1
CO4	2	1	-	-	-	3	3	3	3	3	3	1
CO5	2	1	-	-	-	3	3	3	3	3	3	1
			1 T C	1.41. 0	36 1 4	<u> </u>	2 0 1 4	# 1 G	1 4*			

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Effective from Session: 2	Effective from Session: 2020-21									
Course Code	CH222	Title of the Course	Organic and Physical Chemistry-I	L	aromaticit		С			
Year	Second	Semester	Third	3	1	0	4			
Pre-Requisite	10+2 with Chemistry	Co-requisite	-							
	Students will be able to u	nderstand the about the c	hemistry of aliphatic hydrocarbons, properties, me	echanis	sm of a	dditio	n and			
Course Objectives	elimination reactions, co	onformational analysis o	of alkanes and cycloalkanes, stability and rea	ctivity	, aron	naticity	and			
	substitution reactions of h	omocyclic& heterocyclic	compounds, solutions and colligative properties and	nd che	micalE	quilibr	rium.			

	CourseOutcomes
CO1	Understanding of mechanism of eliminations, oxymercuration-demercuration, hydroboration- oxidation, ozonolysis, reduction (catalytic and chemical), syn and anti-hydroxylation, Allylic and benzylicbromination.
CO2	Comprehension of conformational analysis, Relative stability and energy diagrams of alkanes, Chair, Boat and Twist boat forms of cyclohexane with energy diagrams, analyse and compare relative stability of mono substituted cycloalkanes.
CO3	To create basics for the aromaticity, Hückel's rule, of homocyclic& heterocyclic compounds, electrophillic and substitution reactions & theirmechanism, directing effects of the groups.
CO4	Able to evaluate different types colligative properties like relative lowering of vapour pressure, elevation of boiling point, depression of freezing point, osmotic pressure and amount of solute.Know about lowering of vapour pressure, Raoult's and Henry's Laws and theirapplications,
CO5	Analyze the criteria of thermodynamic equilibrium, chemical equilibria in ideal gases, Le Chatelier Principle, equilibrium between ideal gases and a pure condensed phase.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Chemistry of aliphatic hydrocarbons	General methods of preparation, physical and chemical properties of alkenes and alkynes, Mechanism of E1, E2, E1CB reactions. Saytzeff and Hofmann eliminations. Electrophilic additions their mechanisms (Markownikoff/ Anti Markownikoff addition), mechanism of oxymercuration-demercuration, hydroboration- oxidation, ozonolysis, reduction (catalytic and chemical), syn and anti-hydroxylation (oxidation). 1, 2 and 1,4-addition reactions in conjugated dienes and Diels-Alder reaction; Allylic and benzylicbromination and mechanism, e.g. propene, 1-butene, toluene, ethyl benzene.	8	1
2	Conformational analysis of alkanes and cycloalkanes	Conformational analysis of alkanes: Relative stability and Energy diagrams. Types of cycloalkanes and their relative stability, Baeyer strain theory: Chair, Boat and Twist boat forms of cyclohexane with energy diagrams; Relative stability of mono substituted cycloalkanes, cyclopropane ring, banana bonds.	8	2
3	Aromatic hydrocarbons	 Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions and heterocyclic compounds with suitable examples. Electrophilic aromatic substitution: halogenation, nitration, sulphonation and Friedel-Craft's alkylation/acylation with their mechanism. Directing effects of the groups: Activating and deactivating substituents, orientation and ortho/para ratio, Side chain reactions of benzene derivatives, Birch reduction; Methods of formation and chemical reactions ofalkylbenzenes, alkynylbenzenes and biphenyl, naphthalene and Anthracene Dilute solutions; lowering of vapour pressure, Raoult's and Henry's Laws and their 	8	3
4	Solutions and colligative properties	8	4	
5	Chemical equilibrium	Criteria of thermodynamic equilibrium, degree of advancement of reaction, chemical equilibria in ideal gases. Thermodynamic derivation of relation between Gibbs free energy of reaction and reaction quotient. Equilibrium constants and their quantitative dependence on temperature, pressure and concentration (Le Chatelier Principle, Quantitatively). Free energy of mixing and spontaneity. equilibrium between ideal gases and a pure condensed phase	8	5
Referen	nce Books:			
		yd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. Published by Pearson Educati	on.	
		hemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. Published by Pearson Education.		
		c Chemistry, Published by McGraw-Hill Education.		
		Puri Sharma &Pathania.		
		le. Physical Chemistry 9th Ed., Oxford University Press.		
e-Learn	ing Source:			
		demy/lesson/unsaturated-hydrocarbon-definition-examples.html		
	· ·	du/media/Lecture+13+-+Conformations+of+Alkanes+and+Cycloalkanes+%5BCHEM3053-001%	65D/0_rmpf	ppnb
		om/search?q=solutions+and+colligative+properties		
	1	nptel.ac.in/noc22_cy39/preview		
	https://www.google.c	om/search?q=chemical+equilibrium+with+applications		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	1	1	-	-	2	3	3	2	-	2	2
CO2	3	1	1	-	-	2	3	3	2	-	2	2
CO3	3	1	-	-	-	2	3	3	2	-	2	2
CO4	3	-	-	-	-	2	3	3	2	3	2	2
CO5	3	-	1	-	-	2	3	3	2	3	2	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Sess	Effective from Session: 2020-21										
Course Code	MT211	Title of the Course	Numerical Computing	L	Т	Р	С				
Year	Second	Semester	Third	3	1	0	4				
Pre-Requisite	10+2 with Mathematics	0+2 with Mathematics Co-requisite									
	The course is aimed to	The course is aimed to develop the skills in mathematics especially in Numerical Computing which is necessary for grooming them									
Course Objectives	into successful science	graduate. The topics intro	duced will serve as basic tools for specialized studies in sci	ience fi	eld.						

	Course Outcomes							
CO1	Apply numerical methods to find the solution of algebraic and transcendental equations using different methods under different							
	conditions, and numerical solution of system of algebraic equations							
CO2	Apply different interpolation methods and finite difference concepts							
CO3	Apply central interpolation methods and interpolation techniques for unequal intervals							
CO4	Work out numerical differentiation and integration whenever and wherever routine methods are not applicable.							
CO5	Work numerically on the ordinary differential equations using different method through the theory of finite differences.							

Unit No.	Title of th	e Unit					Content of	Unit			Contact Hrs.	Mapped CO
1	Solution of Transcendent and Linear Equations	al Equati	ons Newt	Newton-Raphson's Method and their convergence.								1
2	Finite Diff Interpolation	ferences a	and opera Polyr form	ward and Backward Difference Operators, Difference Table, Shift and Averaging rators, Relation between Operators, Factorial polynomials. ynomial interpolation, Newton-Gregory forward and backward interpolation nulae.							8	2
3	Central Inte Interpolation Intervals											3
4	Numerical & Integratio	Differentiat n	ation Numerical differentiation and errors in Numerical differentiation, Newton-Cot formula, Trapezoidal rule, Simpson's rule, Boole's, Weddle's and Eul Maclaurin's formulae.								8	4
5	Numerical Ordinary Equations	Solutions Differen		Picard's and Taylor's Series, Euler's Method, Runge-Kutta fourth order Method Solution of Boundary value problem by finite difference Method.							8	5
Referen	nce Books:		•									
	oeb Ahmad, Z											
	ain, S.R.K. Iy ers, 2007.	engar and l	R.K. Jain,	Numerical N	Aethods for	Scientific a	and Engine	ering Com	putation, 7th	i Ed., Ne	w Age Inter	national
	cal Methods by	y P. Kandasa	amy, S. Cha	nd Publicatio	on, New Del	hi.						
Introduc	ction to Numer	rical Analysi	is, by S.S. S	astry, Prentic	e Hall of In	dia.						
e-Lea	rning Source:											
https://w	www.youtube.	com/watch?	v=_f_Pu7t9	eP8								
https://v	www.youtube.	com/watch?	v=3B3lGO7	WERE								
https://v	www.youtube.	com/watch?	v=1g0G_kj	A560&list=P	Lq-Gm0yR	YwTguDcfy	/lj1ZicXxzd	ZCAr5S∈	dex=4			
-	www.youtube.				- ·							
				rse Articulat	1	5	• •					
PO-PSO	DOI	DOA								PGOC	DCO (D005
<u>CO</u> CO1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1 CO2	3	2	2	1	3	3	3 2	1 2	3	2	1 2	3
CO2	3	2	3	1	3	2	3	1	2	2	2	3
CO4	3	2	3	1	3	3	2	3	1	2	1	2
CO5	3	2	1	1	3	2	1	2	1	3	2	1
			1- Low Co	orrelation; 2	- Moderate	Correlation	n; 3- Substa	ntial Corre	lation			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Sessi	Effective from Session: 2020-21									
Course Code	PY203	Title of the Course	Electronics and Thermal Physics Lab	L	Т	Р	С			
Year	Second	Semester	Third	0	0	6	3			
Pre-Requisite	10+2 with Physics	10+2 with Physics Co-requisite								
Course	The purpose of this un	The purpose of this undergraduate course is to impart practical knowledge of the electronics and thermal physics through different								
Objectives	experiments related to	experiments related to its theoretical course.								

	Course Outcomes								
CO1	To analyze the two basic semiconductor devices (PN Junction and Zener Diode) graphically.								
CO2	To Study the characteristics of transistor in different configurations and its application as an amplifier and oscillator in a circuit.								
CO3	To understand the functioning of different components used in a regulated power supply.								
CO4	To evaluate the value of Stefan's constant for a body and also analyze the behaviour of a thermocouple.								
CO5	To practically calculate the mechanical equivalent of heat of a substance in liquid state.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Exp-01	To study the frequency response of RC coupled amplifier.	6	2						
2	Exp-02	To draw the characteristic of PN junction diode.	6	1						
3	Exp-03	To study the characteristics of a transistor in CE, CB and CC configurations.	6	2						
4	Exp-04	To study of Regulated Power Supply.	6	3						
5	Exp-05	xp-05 To calibrate an oscillator (Hartley/Phase shift) using CRO 6 2								
6	Exp-06	To draw the characteristic of a Zener diode.	6	1						
7	Exp-07	Determination of Stefan's constant.	6	4						
8	Exp-08	To study the characteristics of a thermocouple.	6	4						
9	Exp-09	To determine the mechanical equivalent of heat by Callender and Barne's constant flow method.	6	5						
10	Exp-10	To find the mechanical equivalent of heat using Joule's calorimeter.	6	5						
Refere	nce Books:									
Practi	ical Physics. by R. K.	Shukla, New Age International Private Limited; Third edition.								
B.Sc.	Practical Physics by	Harnam Singh and Hemme, S. Chand.								
B. Sc	. Practical Physics by	CL Arora, S Chand & Company.								
Practi	ical Physics by Kuma	r P.R.S., Prentice Hall India Learning Private Limited								
e-Lea	arning Source:									
https:	//youtu.be/SsR-MlQl	BqCg								
https:	//youtu.be/3l0uZwxjl	RV4								
https:	//youtu.be/0hJ2Hpm8	8oj8								
https:	//youtu.be/00_lbv2Ll	DS8								

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PS04	PS05		
CO1	3	3	2	-	2	1	1	1	2	1	3	-		
CO2	2	2	3	-	3	2	2	2	3	1	1	-		
CO3	3	3	2	-	2	1	1	3	1	2	2	-		
CO4	1	2	3	-	1	2	2	3	2	3	1	-		
CO5	3	1	1	1	2	3	2	2	3	1	1	-		
	•	•	1 I	malation. 2	M	C	2 0 1 4	- 1 C	1 - 4 *	•				

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21											
Course Code	CH223	Title of the Course	Chemistry Practical-III	L	Т	Р	С				
Year	Second	Semester	Third	0	0	4	2				
Pre-Requisite	10+2 with Chemistry	Co-requisite									
Course Objectives	transferrable abilities (ca	pacity to work alone an its can also estimate the	ation skills, concepts to address qualitative and qu d in teams), students will be able to work prod presence of different metals, identify equilibrium ar weight.	uctivel	y and	safely	in a				

	Course Outcomes								
CO1	To become proficient in procedural knowledge and be able to measure the alkali and acid content.								
CO2	Must develop the skill to carefully operate the equipment and estimate calcium, iron, and copper levels in the given sample.								
CO3	To build a respect for logic, reason, and intellectual integrity, as well as to analyze copper and nickel and identify the functional group (carboxylic acid and phenol).								
CO4	To ascertain equilibrium and neutralization energy.								
CO5	Analyze equilibrium's significance and concentration's influence on it, as well as determine the molecular weight of given sample.								

Exp.			Contact	Mapped
	•			
005	Analyze equilibriu	in s significance and concentration s influence on it, as wen as determine the molecular weight of gr	ven sample.	

Exp. No.	Title of the U	Init					Hrs.	CO				
1	Experiment-0	1 Dete	ermination o	of acetic acid	l in commer	cial vinegar	using NaOH	[.			4	1
2	Experiment-0	Dete	ermination o	f alkali cont	ent – antacio	d tablet usin	g HCl.				4	1
3	Experiment-0		mation of ca ous and ferri				calate by per	rmanganome	etry. Estimat	ion of	4	2
4	Experiment-0	4 Esti	mation of co	opper using t	thiosulphate.						4	2
5	Experiment-0	5 Ana	alysis of Cu a	as CuSCN a	nd Ni as Ni	(dimethylgly	voxime).				4	3
6	Experiment-0	com	ection of foll pounds, a) (Carboxylic a	cid, b) Phei	nol	C		U U		4	3
7	Experiment-0	07 To dacid	determine the and determ	e enthalpy o ine the entha	/ strong	4	4					
8	Experiment-0	18 The	equilibrium	between Fe	and Fe(C	$NS)^{2+.}$					4	4
9	Experiment-0	9 To s	study the effe	ect of conce	ntration on e	equilibrium.					4	5
10	Experiment-1		ermination of molecular weight of a non-volatile solute by Rast method/ Beckmann freezing nt method.								4	5
	ce Books:	· . T	1 1 0. 1	LDGV	1 1 0.		1' ' D	('E 1'.('				
	e Practical Cher l Organic Cherr		<u> </u>	n, L.D.S Ya	dav, Jaya Si	ngn, I.K. Sid	diqui, Praga	tiEdition.				
	Physical Chen			and PS Ra	ohavan							
	ental Inorganic				Silu vull.							
	ing Source:)									
	ww.fandm.edu	/uploads/fi	iles/7964570	181257972	9-genchem-i	reference-for	-web.pdf					
	e.akfarmahadhi				<u> </u>							
https://fa	aculty.psau.edu	.sa/filedow	/nload/doc-6	-pdf-f06110	ef2e1e1ae1	19cbacf71dd	17732-origi	inal.pdf				
https://w	ww.stem.org.u	k/resource										
				Course Art	ticulation M	latrix: (Maj	oping of CC	os with POs	and PSOs)			
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	1	-	1	3	3	3	3	2	2	2	1
CO2	3	1	-	-	3	3	3	3	2	2	2	1
CO3	1	1	-	1	3	3	3	3	2	2	2	1
<u>CO4</u>	3	1	-	1	3	3	3	3	2 2	2	2	3
CO5	3	1	-		3	3	3	3	2	2	2	2

Sign & Seal of HoD

Effective from Session: 2020-21											
Course Code	MT212	Title of the Course	Numerical Technique Lab	L	Т	Р	С				
Year	Second	Semester	Third	0	0	4	2				
Pre-Requisite	10+2 with Mathematics	10+2 with Mathematics Co-requisite									
Course Objectives	The aim of this course is to introduce and develop basic concepts of C to apply in the programming for Numerical methods. Moreover, this course is aimed to provide an understanding to write a program of the numerical solutions of algebraic and										
	transcendental equations, Interpolation, Solution of differential equations and numerical Integration in C.										

CO1					Co	urse Outco	mes					
	Understand	the basic co	oncepts of C-	language fo	or computer p	orogrammin	g.					
CO2	Able to writ	e a program	in C for nur	nerical solut	ions of algeb	raic and tra	nscendental	equations.				
CO3	Able to writ	e a program	n in C for inte	rpolation.								
CO4	Able to write a program in C for numerical solution of ODE.											
CO5	Able to write a program in C for numerical integration.											
Unit No.	Title of th	e Unit		Content of Unit								Mapped CO
1			Write a prog Bisection M	ram in C for lethod.	r numerical s	olutions of	algebraic an	d transcende	ental equation	ons using	4	1
2			Write a prog using False	gram in C f		l solutions	of algebraic	and transce	endental equ	ations	4	1
3			Write a prog Iteration Me		r numerical s	olutions of	algebraic an	d transcende	ental equation	ons using	4	2
4			Write a prog Iteration Me		r numerical s	olutions of	algebraic an	d transcende	ental equation	ons using	4	2
5		Write a program in C for numerical solutions of algebraic and transcendental equations usi Newton Raphson Method.										
6			Write a prog	ram in C for	interpolation					nula.	4	3
7					interpolation				la.		4	4
8					numerical in						4	4
9					numerical in						4	5
10			Write a prog	ram in C for	numerical so	olution of O	.D.E. using	Euler's Meth	nod.		4	5
Programr TComput Compute	ce Books: ming in ANS ter Based Num er Based Num	merical Tec erical & Sta	hniques by S atistical Tech	antosh Kum niques by D	ar, S. Chand r. Manish Go	& company yal, Univer	v, NewDelhi sity Science	Press, New	Delhi.			
<u> </u>	ming in ANS		tion by E. Ba	llagurusamy	, Tata Mc Gr	aw Hill, Ed	ucation priv	ate limited, 1	New Delhi.			
	ww.youtube.co		=3i0c FhOt5	U								
https://wv	ww.youtube.co	om/watch?v	=FliKUWUV	'rEI								
https://wv	ww.youtube.co	om/watch?v	=7eHuQXM	COvA								
https://wv	ww.youtube.co	om/watch?v			tion Matrix:	Monnina	of COa with	h DOs and T	SO c)			
DO DOO			Cour	se Ai ticula	ion wratrix:	(mapping		n i Os anu i	508)			
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	1	1	1	2	1	1	1	3	2	1	3
CO1	3	1	2	1	3	1	2	2	3	1	2	2
CO2 CO3	3	1	2	1	3	1	1	1	2	2	2	3
000	3	2	1	1	2	1	2	3	1	2	1	2
CO4		1	1	1	2	1	1	2	1	3	2	1

Sign & Seal of HoD

Name & Sign of Program Coordinator

DEPARTMENT OF CHEMISTRY

Bachelor of Science

(Physics, Chemistry, Mathematics)

4th Semester

Syllabi

Effective from Session: 2020-21											
Course Code	PY204	Title of the Course	e of the Course Electricity and Magnetism L								
Year	Second	Semester	Fourth	3	1	0	4				
Pre-Requisite	10+2 with Physics	Co-requisite	-								
Course Objectives	principles of physics	and mathematics, stude	s to impart basic and key knowledge of electricity and n nt will be able to obtain quantitative relations which are v e, the student will able explore subject into their respective of	ery im	portant	-					

	Course Outcomes
CO1	To learn basic mathematical tools with their physical significance as a prerequisite for the course.
CO2	To understand and explain the principles/methods of evaluation of electric field, potential due to charge distribution and apply them to
	practical systems.
CO3	To learn the principles and methods of evaluation of magnetic field and scalar magnetic potential due to due to current or magnetic dipoles.
	Thereby apply them to analyse magnetic properties of dia, para and ferromagnetic materials.
CO4	To describe the principles of electromagnetic induction and study the devices based upon, to investigate their experimental working.
CO5	To formulate Maxwell's equations and apply them to investigate the propagation of electromagnetic waves in free space, dielectric and
	conducting medium.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Vector Analysis & Electrostatics I	Review of vector algebra (Scalar and Vector product), gradient, divergence, Curl and their physical significance, vector integration, electrostatic field, electric flux, Coulomb's law, electric field and potentials, Field due to a uniform charged sphere, derivations of Poisson and Laplace Equations with applications, Uniqueness theorem.	8	1
2	Electrostatics II	Gauss law and its application: The Field of a conductor, electric dipole, field and potential due to an electric dipole, Dipole approximation for an arbitrary charge distribution, method of electrical images, electric quadruple, field due to a quadruple, electrostatic energy of a charged uniform sphere, energy of a condenser.	8	2
3	Magnetostatics and Magnetic Properties of Materials	Magnetic field and force of a current, Magnetic Induction and Biot-Savart Law, Lorentz Force, Vector and Scalar Magnetic potentials, Magnetic Dipole, Magnetomotive force and Ampere's Circuital theorem and its applications to calculate magnetic field due to wire carrying current and solenoid. Intensity of magnetization and magnetic susceptibility, Properties of Dia, Para and Ferromagnetic materials, Curie temperature, Hysteresis and its experimental determination	8	3
4	Electromagnetic Induction	Faraday's laws of electromagnetic induction, Lenz's law, self-inductance (L) of single coil, mutual inductance (M) of two coils, Energy stored in magnetic field. Motion of electron in changing magnetic field, Betatron, Magnetic energy, induced magnetic field (Time varying electric field), theory and working of moving coil ballistic galvanometer.	8	4
5	Maxwell's Equations and Electromagnetic Waves	Idea of displacement current and Maxwell's modification of Ampere's law, Integral and differential forms of Maxwell's equations and their physical significance, skin effect. The wave:(equation satisfied by E and B, plane electromagnetic waves in vacuum), Poynting vector, reflection at a plane boundary of dielectrics, EM waves in a conducting medium, reflection and refraction by the ionosphere.	8	5
Refere	nce Books:			
	1 1	ctricity and Magnetism, Ed. E.M. Purcell (McGraw Hill).		
		Electrodynamics" (Prentice-Hall ofIndia).		
S. Mal	hajan and A. A. Rangwa	la; "Electricity and Magnetism" (Tata McGraw-Hill).		
	rtis; "Electromagnetic F	ields".		
e-Lea	rning Source:			
	//nptel.ac.in/courses/			
http://	library.iul.ac.in/ELib	orary.aspx		
		watch?v=XJYY4jlwZzo		
https://	//www.youtube.com/	user/imperialcollegevideo/search?query=eric+laithwaite		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PS04	PS05	
CO1	3	2	1		2	1	1	1	2	1	3		
CO2	2	3	1		2	2	3	2	3	1	1		
CO3	3	1	2		2	1	1	3	1	2	2		
CO4	2	2	3		1	3	2	3	2	3	1		
CO5	3	1	2		2	1	1	2	3	1	1		

Effective from Session: 2017-18											
Course Code	CH224	Title of the Course	Inorganic and Physical Chemistry-II L T P C								
Year	Second	Semester	Fourth	3	1	0	4				
Pre-Requisite	10+2 with Chemistry	Co-requisite	-								
Course Objectives	nomenclature and isomer	ism in coordination con solid state chemistry an	understanding of general characteristic propertie npounds, organometallic chemistry of transition d to gain the knowledge of basics of electrochem value.	elemer	nts , c	hemist	ry of				

	Course Outcomes
CO1	Student will be able to understand the approaches to the development of d block fundamental with CFT/VBT/MOT and its widespread applications.
CO2	Students will have a firm foundation in the IUPAC nomenclatures of the complexes and the bonding models, structures, reactivity, and applications of coordination complexes, boron hydrides, metal carbonyls, and organometallics.
CO3	Students will be able to understand about the key concepts of inorganic and organometallic chemistry including those related to synthesis, reaction chemistry, and structure and bonding.
CO4	Students will be able to understand about the key concepts of solid state chemistry, structure elucidation through X ray diffractions methods.
CO5	Students will have a firm foundation in the basic of the electrochemistry, transport phenomenon and conduction approaches to the development of electron transfer process for the cell reactions.

Unit No.	Title of th	e Unit			Contact Hrs.	Mapped CO						
1	Chemistry elements transition se	of of eries	elements. Bi transition ser coordination Series: Gene ionic radii, o	Chemistry of Elements of First Transition Series: Characteristic properties of d-bloc elements. Binary compounds (hydrides, carbides and oxides) of the elements of the first ransition series and complexes with respect to relative stability of their oxidation states coordination number and geometry. Chemistry of Elements of Second and Third Transitio Geries: General characteristics, comparative treatment of Zr/Hf, Nb/Ta, Mo/W in respect of onic radii, oxidation states, magnetic behavior, spectral properties and stereochemistry								1
2	Coordinatio compounds		Werner's co- concept, che compounds,	elates, nom	enclature of	f coordinati	on compou	nds, isomer			8	2
3	Chemistry elements of transition se	-	Chemistry of lanthanide c sulphate and magnetic pro	contraction, its analytic operties, che	complex f cal uses. Ch mistry of se	ormation, or emistry of A paration of I	occurrence a Actinides: co Np, Pu and A	and isolatio onfiguration, Am from U.	n, cerie an oxidation s	nmonium states and	8	3
4	Solid states		Definition o equation, De powder meth	etermination	n of crystal	structure of					8	4
5	Electrochen	nistry-I	equivalent c Kohlrausch's	Electrical transport - Conduction in metals and in electrolyte solutions, specific conductance, equivalent conductance, variation of equivalent and specific conductance with dilution. Kohlrausch's law, weak and strong electrolyte, Arrhenius theory of electrolyte dissociation and its limitations. Ostwald's dilution law its uses and limitations							8	5
Referen	ce Books:									1		
			mistry, Pearso			·	1 6.04	· 10		E I		
			er, R. L., Medh H., Concepts						activity, Pea	arson Educ	ation 2006.	
			istry, Publishe			chemistry,	Oxioid, 197	0.				
			l Chemistry 9t			y Press.						
e-Learn	ing Source:											
			/files/7964570									
<u> </u>			E-BOOK/12-1									
https://f	aculty.psau.ed	tu.sa/filedo	ownload/doc-6	b-pdf-f06110	Det2e1e1ae1	19cbact71d	d17732-orig	ginal.pdf				
				Course Art	iculation V	latrix: (Ma	nning of CC)s with POs	and PSOs)			
PO-PSO	DO 1	DOJ									DSO 4	DEOS
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
<u>CO1</u>	3	-	-	1	-	3	3	2	3	1	2	2
	3	-	-	1	-	3	3	2	3	2	2	2
CO2				1		2	n	^	2	2	2	
CO2 CO3 CO4	3	-	-	1	-	3	3	2 2	3	3	2 2	2

-1-33231-33231- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Sessi	on: 2017-18						
Course Code	CH225	Title of the Course	Organic and Physical Chemistry-II	L	Т	Р	С
Year	Second	Semester	Fourth	3	1	0	4
Pre-Requisite	10+2 with Chemistry	Co-requisite	-				
Course Objectives	To develop understanding of Equilibrium.	Alkyl and Aryl Halides,	Alcohols, phenols, Aldehydes and Ketones, Ch	emical	Kinet	ics, Pł	ıase

	Course Outcomes
CO1	Comprehension of classification, methods of formation and chemical reactions of alkyl halides, Mechanism of nucleophilic substitution
001	reaction of alkyl halides (SN1 and SN2 reactions) with energy profile diagrams.
con	To create basic knowledge of nomenclature, methods of formation, Hydrogen bonding. Acidic nature, Reactions of alcohols, Dihydric alcohols
CO2	and phenols.
CO3	Able to evaluate different types of Synthesis of aliphatic aldehydes and ketones, alcohols, carboxylic acids and named reactions as Reimer-
COS	Tiemann reaction, gattermann-koch reaction and aromatic ketones by Friedel craft acylation.
CO4	Analyze and compare Theories of chemical kinetics, Molecularity and order of reaction, concept of activation energy method of integration,
004	half-life method and isolation method, Thermodynamics aspect of transition state theory.
005	Understand the terms-phase, component and degree offreedom, derivation of Gibb's phase rule, one component system-water, two component
CO5	system solid liquid equilibria simple eutectic – Bi-Cd, Pb-Ag systems, desilverisation of lead

Unit No.	Title of the Unit				С	ontent of U	nit				Contact Hrs.	Mapped CO
1	Alkyl and aryl halides	Methods of formation, chemical reactions. Mechanism of nucleophilic substitution reactions alkyl halides, SN^2 and SN^1 reactions with energy profile diagrams, Aryl halides - Methods formation, nuclear and side chain reactions. Mechanisms of nucleophilic aromatic substitutions.										1
2	Alcohols and phenols	carboxy pinacolo Compar Reactio rearrang	Monohydric alcohols- nomenclature, methods of formation, reduction of aldehydes, ketor carboxylic acids and esters. Hydrogen bonding. Acidic nature, Reactions of alcohols and pinace pinacolone rearrangement. Preparation of phenols, physical properties and acidic charace Comparative acidic strengths of alcohols and phenols, resonance stabilization of phenoxide is Reactions of phenols – electrophilic aromatic substitution, acylation and carboxylation. F rearrangement, Claisen rearrangement, & Reimer-Tiemann reaction.									2
3	Aldehydes and ketones	carboxy oxidation ketones reduction	ynthesis of aliphatic aldehydes and ketones with particular reference to acid chlorides, alcoho arboxylic acids, Grignard reagent, alkenes and 1, 3-dithianes. Synthesis of aromatic aldehydes xidation of alkyl benzene, Reimer-Tiemann reaction, Gattermann-Koch reaction and aroma etones by Friedal Craft Acylation, Aldol condensation, Cannizzaro reaction, Clemmens eduction and Wolff-Kishner reduction.									3
4	Chemical kinetics	zero oro Determ and isol Theorie reaction on hard	Molecularity and order of reaction, concentration dependence of rates, integrated rate expression for zero order, first order, second order, pseudo order reactions, half-life. Determination of the order of reaction: Differential method, method of integration, half-life method and isolation method. Theories of chemical kinetics: Arrhenius theory of reaction rate, effect of temperature on rate or eaction, concept of activation energy. Simple collision theory based on hard sphere model, transition state theory (equilibrium hypothesis).Thermodynamics aspect or ransition state theory.									4
5	Phase equilibrium	phase roof two	Statement and meaning of the terms-phase, component and degree of freedom, derivation of Gibb' phase rule, phase equilibria of one component system-water, $'CO_2'$ and 'S' systems. Phase equilibria of two component system – solid liquid equilibria simple eutectic – Bi-Cd, Pb-Ag systems desilverisation of lead.								8	5
Referen	ice Books:											
Morriso	n, R. N. & Boyd	l, R. N. O1	rganic Chem	istry, Dorlin	ng Kindersle	y (India) Pv	t. Ltd. Publi	shed by Pear	rson Educati	on.		
	L. Organic Che											
	Carey Organic (hemistry.	, Published l	by McGraw-	Hill Educati	ion. Physical	Chemistry,	Puri Sharm	a & Pathania	a		
	ning Source:	/ 1		· · ·	1 1.	1						
	tudy.com/learn/loyjus.com/chemi					mi						
	vww.khanacadei					etones/nom	enclature-alo	lehvde-keto	ne/v/reactivi	tv-of-aldel	vdes-and-k	etones
	ptel.ac.in/course				, <u>j</u>	,		,		,	,	
				Course Art	ticulation M	latrix: (Maj	pping of CC	os with POs	and PSOs)			
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	1	3	-	-	2	2	3	3	2	3	-
CO2	3	1	3	-	-	2	2	3	3	2	3	-
CO3	3	1	3	-	-	2	2	3	3	2	3	-
CO4 CO5	3	1	3	-	-	2	2	3	3	2	3	-
005	3	1		-	- - Moderate	=	-	-	-	2	3	-

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation							
Name & Sign of Program Coordinator	Sign & Seal of HoD						

Effective from Session: 2020-21										
Course Code	MT213	Title of the Course	Tensor Analysis	L	Т	Р	С			
Year	Second	Semester	Third	3	1	0	4			
Pre-Requisite	10+2 with Mathematics	with Mathematics Co-requisite								
Course Objectives		n, subtraction, multiplic	art basic and key knowledge of tensors and their types & ation on tensors. After successful completion of course, t							

		Course Outcomes
	CO1	Students will be able to understand Vector Spaces, dual spaces, tensor product of vector spaces, and also about transformation
	COI	formulae for tensors.
	CO2	Students will gain a understand of Tensors and their types: Contravariant and covariant vectors and tensors, mixed tensors, Symmetric and
	02	skew symmetric tensors, Associated tensors, Reciprocal tensors.
ſ	CO3	Students will be able to learn and implement Algebra of tensors, Contraction and inner product. They will also study about Quotient law &
	005	Riemannian metric tensor
ſ	CO4	Students will create the own understanding of Christoffel Symbols. They will learn covariant differentiation of tensors and also study about
	04	Gradient, divergence and curl in tensor notation.
	CO5	Students will gain an understanding of The fundamental theorem of local Riemannian geometry, Differential operators, curvature
	005	tensor, Geodesics, geodesics coordinate system, geometrical interpretation of the curvature tensor.

Unit No.	Title of the Unit	Hrs.													
1		Vector S	Spaces, dua	l spaces, t	ensor prod	uct of vec	tor spaces,	transformat	ion formulae		8	1			
2 Tensor, Contravariant and covariant vectors and tensors, mixed tensors, Symmetric and skewsymmetric tensors, Associated tensors 3 Algebra of tensors, Contraction and inner product, Quotient law, Reciprocal tensors,															
3		Riemannian metric tensor													
4		Christoff	Christoffel Symbols, covariant differentiation, Gradient, divergence and curl in tensor notation. 8 4												
5		The fundamental theorem of local Riemannian geometry, Differential operators, curvature tensor, Geodesics, geodesics coordinate system, geometrical interpretation of the curvature tensor.85													
Reference	e Books:														
Tensor Ca	lculus, Zafar	Ahsan, An	amaya Publi	cation, New	Delhi.										
	al Geometry		•			blishing Ho	use Pvt. Ltd	, 2007.							
	Outlines of T				,			,							
Tensor Ca	lculus & Rier	mannian Ge	eometry, D.C	C. Agarwal,	Krishna Pub	lications									
e-Learn	ing Source:														
	smolearning.c	org/video-le	ectures												
https://con	ntent.kopykita	ab.com/ebo	oks/2016/02	/5649/samp	le/sample_5	649.pdf									
	ww.win.tue.nl				<u> </u>		unde%20en	%20Discret	e%20Wiskur	nde/T ENS	ORDictaa	t-2004-			
Partial%2	OTranslation.	pdf			0										
https://cos	smolearning.c	org/video-le	ectures												
			Cou	ırse Articul	ation Matr	ix: (Mappir	ng of COs w	ith POs and	PSOs)						
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	3	2	2	1	1	1	2	1	3	2	1	3			
CO2	3	1	2	1	1	1	2	2	3	1	2	2			
CO3	3	1	2	1	1	1	2	1	2	2	2	3			
CO4	3	1	2	1	1	1	2	3	1	2	1	2			
CO5	3	1	2	1	1	1	2	2	1	3	2	1			
		1- I	low Correla	tion: 2- Mo	derate Cor	relation: 3-	Substantia	Correlation	1			1			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Sess	Effective from Session: 2020-21											
Course Code	MT214	Title of the Course	Abstract Algebra	L	Т	Р	С					
Year	Second	Semester	Third	3	1	0	4					
Pre-Requisite	10+2 with Mathematics	Co-requisite	-									
	The objective is to intro	duce the basic concept	to the subject of algebra. The course deals with the some alge	braic s	tructur	es nar	ely					
Course Objectives	groups, rings, fields and	some related structures	s. Abstract algebra enables students to build mathematical the	inking	and sk	ill.						

	Course Outcomes								
CO1	01 Students will be able to explain the fundamental concept of Group and its well behaved subsets.								
CO2	O2 Students will be able to describe fundamental properties of Ring and its related structures.								
CO3	Students will be an understanding of Elementary row operations and their applications to solution of a system of linear equations.								
CO4	Students will be able to describe Vector spaces and its properties.								
CO5	Students will be able to explain Linear transformation and its properties as well as applications.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO							
1		Group, homomorphism, isomorphism, conjugacy relation, normalizer, centre of group.	8	1							
2		Ring, ring homomorphism, ideals, integral domain, introduction to field.	8	2							
3											
4		Vector spaces, Subspaces, Span of a set, Linear dependence and independence, Dimension and basis.	8	4							
5		Linear transformation and their matrix representation, rank nullity theorem.	8	5							
Referen	ce Books:										
Universi	ity Algebra by N	N.S. Gopalakrishnan, New Age International publishing house, New Delhi.									
Modern	Algebra by Sur	jeet Singh, Vikas Publishing House Pvt. Ltd., New Delhi.									
An intro	duction to Line	ar Algebra by V. Krishnamurthy, V.P. Mainra & J. L. Arora, East West Press Pvt. Ltd., New Delhi.									
				-							
o I cor	ning Source.										

e-Learning Source: https://nptel.ac.in/courses/111/105/111105112/ https://nptel.ac.in/courses/111/101/111101115/

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	3	2	1	2	3	1	3	1	3	2	1	3			
CO2	3	2	2	2	3	1	2	2	3	1	2	2			
CO3	3	2	2	2	2	1	2	1	2	2	2	3			
CO4	3	2	2	2	2	1	3	3	1	2	1	2			
CO5	3	2	1	2	3	1	2	2	1	3	2	1			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Sessio	n: 2020-21									
Course Code	PY205	Title of the Course	Electricity and Magnetism Lab	L	Т	Р	С			
Year	Second	Semester	Fourth	0	0	6	3			
Pre-Requisite	10+2 with Physics	Co-requisite								
Course Objectives	The purpose of this undergraduate course is to impart practical knowledge/measurements in electricity and magnetism through									
Course Objectives	different experiments	s related to its theoretica	l course.							

	Course Outcomes								
CO1	D1 Determine the energy band gap of a given semiconductor.								
CO2	2 Measurement of high and low resistance and capacitance of a capacitor.								
CO3	Determine the coefficient of self and mutual inductance between two given coils.								
CO4	Study the characteristics of Ballistic Galvanometer.								
CO5	Measurement of capacity of capacitor and study the characteristic of a choke								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO								
1	Exp-01	Study of characteristics of a ballistic Galvanometer.	6	1								
2												
3												
4												
5	Exp-05	To measure high Resistance by the method of Leakage of a condenser.	6	2								
6	Exp-06	To determine the coefficient of Mutual Inductance between two coils.	6	3								
7	Exp-07	To determine the coefficient of Self Inductance of a single coil.	6	3								
8	Exp-08	To determine the capacity of condenser by absolute method.	6	5								
9	Exp-09	To study of characteristic of a choke.	6	5								
10	Exp-10	Measurement of inductance by Anderson's bridge.	6	3								
Referen	ce Books:											
Practica	al Physics. by R. K. Shukla	, New Age International Private Limited; Third edition.										
B. Sc . I	Practical Physics by Harna	m Singh and Hemme, S. Chand.										
B. Sc. F	Practical Physics by CL Are	ora, S Chand & Company.										
Practica	al Physics by Kumar P.R.S	., Prentice Hall India Learning Private Limited										
e-Lear	rning Source:											
https://	/www.exploratorium.ed	u/snacks/subject/electricity-and-magnetism										
https://	/ocw.mit.edu/courses/ph	nysics/8-02-physics-ii-electricity-and-magnetism-spring-2007/experiments/										
www.y	youtube.com											
http://v	www.rossnazirullah.con	n/BSc/BSc.htm										

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PS04	PS05		
3	2	1		3	3	2	1		1	3			
2	1	3		1	2	3	2		1	1			
2	2	2		3	1	3	3		2	2			
3	1	3		2	2	1	3		3	1			
3	2	1		3	3	2	2		1	1			
	PO1 3 2 2 3 3 3	PO1 PO2 3 2 2 1 2 2 3 1 3 2	PO1 PO2 PO3 3 2 1 2 1 3 2 2 2 3 1 3 3 2 1										

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session	: 2017-18									
Course Code	CH226	Title of the Course	Chemistry Practical-IV	L	Т	P	С			
Year	Second	Semester	Fourth	0	0	4	2			
Pre-Requisite	10+2 with Chemistry	Co-requisite	-							
Course Objectives	Students will be able to work effectively and safely in a laboratory environment, and they will have practical, technical, and communication skills, as well as concepts to solve qualitative and quantitative problems, as well as transferable skills such as the ability to work in teams and independently. Moreover, students are able to prepare and determine the strength of some organic and inorganic chemicals.									

	Course Outcomes							
CO1	To get proficient in procedural knowledge to carry out oxidation, benzoylation, and acetylation (salicylic acid, aniline, glucose, and hydroquinone).							
CO2	To get skill to perform reduction reactions and concentration affects reaction speed.							
CO3	To gain expertise in calculating pKa and critical solution temperature (CST).							
CO4	To be able to prepare some inorganic substances (Chrome Alum, Potash Alum, and Sodium Ferrioxalate).							
CO5	Being able to make iodoform and measure the concentration of acetic acid in a sample.							

Exp. No.	Title of th Unit	ie	Content of Unit								Contact Hrs.	Mapped CO
1	Experiment		Acetylation of salicylic acid, aniline, glucose and hydroquinone, Benzoylation of aniline and phenol							nd	4	1
2	Experiment-	02 Oxid	Oxidation: Preparation of benzoic acid from toluence								4	1
3	Experiment-	03 Redu	Reduction: Preparation of aniline from nitrobenzene								4	2
4	Experiment	.04	To study the effect of concentration on the rate of reaction between sodium thiosulphate and hydrochloric acid.								4	2
5	Experiment-	-05 To d	To determine the pKa of acetic acid								4	3
6	Experiment	06 Dete	Determination Critical Solution Temperature (CST) for the Phenol – Water System.						4	3		
7	Experiment	07 1. Cl 2. Po	Inorganic Chemistry: Preparation of the following: 1. Chrome Alum 2. Potash Alum 3. Sodium Ferrioxalate							6	4	
8	Experiment-	08 Alip	Aliphatic electrophilic substitution: Preparation of iodoform from ethanol and acetone								6	5
9	Experiment		To determine the strength of given acetic acid solution conductometrically by titrating against a standard solution.							4	5	
Practica Practica Experim e-Learn https://w	e Practical Che l Organic Che l Physical Che ental Inorgan ing Source: vww.fandm.ed	mistry, A.I. mistry: B. ic Chemistr u/uploads/f	Vogel. Viswanathan y –W.G.Palr iles/7964570	and P.S.Ra ner.)1812579722	ghavan. 9-genchem-1	eference-fo	r-web.pdf	atiEdition.				
<u> </u>	e.akfarmahadl					<u> </u>						
	aculty.psau.ed						117732-orig	inal.pdf				
https://w	ww.stem.org.	uk/resource	es/collection/									
			г	Course Art	iculation M	latrix: (Ma	pping of CC)s with PO:	s and PSOs)		1	
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	-	-	2	2	3	3	3	3	1	3	3
CO2	3	-	-	2	2	3	3	3	3	1	3	3
<u>CO3</u>	3	-	-	2	2	3	3	3	3	1	3	3
<u>CO4</u>	3	-	-	2	2	3	3	3	3	1	3	3
CO5	3	-	<u> </u>	2 prrelation; 2	2		3	3	3	3	3	3

Name & Sign of Program Coordinator Sign & Seal of HoD